
1

SDST CM and I&T

 Paula Brown

2

Overview

• Configuration Management:
– Turnover Process

– Build Process

– Updates to CM Controlled Software

– Supporting V1 S/W Fixes

• Testing @ TLCF:
– Tools Being Developed to Support Testing

– Test Data

– Storage of Test Data

3

Overview (cont)

– Storage of Test Results

– Types of Tests to Be Performed

– Levels of Testing To Be Performed

– Validation/Review of Test Results

– Example of Function test for Process

4

Software Turnover Process

• Software turnover process has been redefined. New inboxes
(mailboxes) created for turnovers.

• Inboxes have been set up to restrict unauthorized users from
gaining access. Can no longer submit a turnover using the login
id of ‘anonymous’.

• The following inboxes/mailboxes have been created on modisnfs3:

– /DEV

• /IN - accessible to science team members/CM only

• /CM - accessible to CM only

• /OUT - accessible to STIG members/CM only
– /STIGIN - accessible to STIG members/CM only

5

• Science team members:
– Now login using your username to modisnfs3 ftp site

– Ftp software turnover to the corresponding directory under
/DEV/IN (i.e. /MOD_PR10, MOD_PR27, etc.).

– Upon completion execute the script ‘DEV_IN’ @ /DEV to
automatically notify CM of a turnover.

• Execution of the ‘DEV_IN' script changes the permissions of
the turnover under the corresponding /DEV/IN/MOD_PR....
directory to CM. Until CM moves the files from the
corresponding /DEV/IN/MOD_PR..... directory, the science
team member will not be able to access this directory. The
entire delivery package will be moved to the /DEV/CM/
MOD_PR.... directory.

– To execute the script, @ /DEV enter:

• ‘DEV_IN’ MOD_PR.... (where MOD_PR.... is the
directory in which a turnover was just submitted).

6

• CM Action on Science Team Turnovers:
• CM executes the ‘DEV_CM’ script @ /DEV to move the software

turnover from the /DEV/IN/MOD_PR.... directory to the
corresponding /DEV/CM/MOD_PR.... directory.

• CM verifies the content of the delivery package and takes one of two
actions:

– IF the turnover is incomplete (and discrepancies can not be
resolved without a new complete turnover package):

• CM executes the script ‘CM_reject’ @ /DEV.

– Execution of the script issues a notification to the science
team member of turnover non-compliance and removes
the turnover from the corresponding /DEV/CM/
MOD_PR.... inbox. This requires the science team
member to provide a complete turnover to CM again once
the problem(s) with the turnover have been resolved
because both the /DEV/IN/MOD_PR.... and /DEV/CM/
MOD_PR.... inboxes will be empty.

7

– If the turnover is complete:
• Executes the ‘CM_OUT’ script in the /DEV inbox.

– Execution of the “CM_OUT’ script changes the
permissions of the turnover under the corresponding
MOD_PR.... directory to STIG, moves the software from
the /DEV/CM/MOD_PR.... to the corresponding
/DEV/OUT/MOD_PR.... directory, and issues a
notification to STIG that software has been placed in the
/DEV/OUT area for integration activities.

• To execute the script, @ /DEV enter:

– ‘CM_OUT’ MOD_PR.... (where MOD_PR.... is the
directory in which the turnover was just verified/validated).

8

• STIG Team Members:
– Login to modisnfs3 ftp site using individual username and change

to /DEV/OUT mailbox.

– Move the software under the corresponding
/DEV/OUT/MOD_PR.... directory to the user(s) STIG work area
and perform integration activities.

– Upon completion of integration activities, login to modisnfs3 ftp
site using your username and ftp software turnover to the
corresponding directory in /STIGIN (i.e. /STIGIN/MOD_PR10).

– Execute script ‘STIG_IN’ under /STIGIN to notify CM of turnover.

– Execution of the ‘STIG_IN’ script changes the permissions
of the turnover under the corresponding
/STIGIN/MOD_PR.... directory to CM. Until CM moves
the files from the corresponding /STIGIN/MOD_PR....
directory, the STIG team member will not be able to access
this directory. The entire delivery package will be moved
to the CM Build area.

9

Science Team Member

SDST CMAccept Not Accepted

SSTG

SDST CM AcceptNot Accepted

CM Build Activity

SysTest

10

CM/System I&T BUILD PROCESS

• CM will take all software received and validated by a specified
date and perform a software build activity against it. This
activity includes:
– Verification of makefile compliance.

– Verification of ability to combine the PCFs’ for each process
delivered.

– Check-in of software into CM tool (ClearCase).

– Execution of makefiles to verify ability to build executables.

– Distribution of software into a tree structure based on a TLCF
defined incremental build number. (i.e.. TL1.0, TL2.0, etc..) As
each build is completed, the TLX.X number will be incremented.

11

• CM Software builds will always be inclusive of all current
software plus any new software received

• Example:
– Software build TL2.0 would include all software already

existing in TL1.0 plus the additional software received and
built into TL2.0 ---- TL3.0 would include all software
already existing in TL2.0 plus the additional software
received and built into TL3.0 ---- etc..

12

CM Software Tree Structure

TLX.X

PGE1 PGE2/log
/lib
/bin
/util

MOD02

/doc
/incl
/src
/coeff
/rv
/exec

/doc
/incl
/src
/coeff
/rv
/exec

/doc
/incl
/src
/coeff
/rv
/exec

MOD03MOD01

Build_
Announce

TLX.X

CM

SDTTK M_API

/setup

13

• Upon completion of TLX.X build, CM will:
– Publish a build announcement which lists all software included in

the TLX.X build. This announcement will be posted on the
software development tree under the directory ‘Build_Announce’.

– Update the software development ftp site with the latest CM build.

• The software development ftp site will be located on modisnfs1
@ the mount point of /DEV_CMSW. 2 gig of disk space will
be allocated to support maintaining of software development
area.

• Both the science team members and STIG will have READ
ONLY access to the software development area.

14

Software Development Tree Structure

TLX.X

PGE1 PGE2/log
/lib
/util
/bin

MOD02

/doc
/incl
/src
/coeff
/rv
/exec

/doc
/incl
/src
/coeff
/rv
/exec

/doc
/incl
/src
/coeff
/rv
/exec

MOD03MOD01

Build_
Announce

TLX.X

DEV_CMSW

SDTTK M_API

15

Updates to CM Controlled Software

• When updates/modifications are required to CM controlled
software, both science team members and STIG members will:
– Have to retrieve the latest version of the CM baseline software

from the software development area /DEV_CMSW and copy it to
the your local work area.

– Obtain the current UNIX checksum value(s) for the software that
is to be updated from the CM baseline (/DEV_CMSW).

– Make any appropriate updates/modifications.

• If the updates/modifications are in response to a problem
report, comments must be included in the prologue area of the
corresponding software that include the problem report number
and comments regarding the fix.

16

• Comments are also required for enhancements that do not
address a specific problem report if the software is already
under CM control.

– Obtain new checksum values for updated software being submitted
to CM.

– Provide the before and after checksum values for each updated
software module in the README file when it is submitted to CM.

– Submit updates to CM using the inboxes/mailboxes and procedures
discussed in the previous slides.

• CM will:
– Verify ‘before’ checksum values against the CM baseline to ensure

that the latest version of the CM baseline file was used to perform
the updates. The ‘before’ checksum verification will take place
during the inbox/mailbox turnover process -- thus preventing the
software from getting to the CM build process if the ‘before’
checksums do not match the CM baseline.

– Include these updates in the next pending CM build if all inbox
verifications have passed.

17

Supporting V1 S/W Fixes During V2 Development

• During V2 Science Software Development:
– Testing of V1 software @ the TLCF will be ongoing.

– Integration at the DAAC’s will be ongoing.

• If a problem report is generated against the V1 software during V1
testing @ the TLCF or during any DAAC installation which is
identified as a ‘MUST HAVE’ fix of medium or high priority, the
Science Team members or STIG team members must:
– Support the V1 activities and provide a fix/modification using the

latest CM baseline version of the V1 file; documenting the problem
report # in the software.

– Determine if the V1 fix must be retrofitted into the V2 software
under development and if necessary:

• Retrofit the fix into the V2 code under development,
documenting the Problem report # in the V2 software.

18

Why Stringent CM Control Procedures

• Without Stringent CM Guidelines:
– System Test would have to re-run all previously passed test cases

when an update to existing software was received.

– No way to track PR and CCR resolutions from one software
delivery to the next.

– No way to ensure that previous updates included in a delivery are
included in the next delivery.

– Unable to establish any confidence level on the system software.

– Enables system test to define a ‘baseline’ set of tet scenarios/cases
to be run against each updated software build received from
Configuration Management.

19

Testing @ The TLCF

20

Tools Being Developed to Support Testing

• PCF Combiner:
– The ‘PCF Combiner’ is being developed by the SDST Test Team.

– This tool will enable test to:

• Combine several PCF files into a single PGE (i.e. combine
MOD_PR01 and MOD_PR03 into PGE1)

• Combine several PGE’s into a Super PGE (i.e. PGE1
(MOD_PR01 & MOD_PR03) and PGE2 (MOD_PR02) into a
test PGE called PGE_L1AtoL1B.

• Combine PCF’s together that should not process together into a
single PGE. This provides a level of error checking during
system test:

– Submission of a non-valid input product to the next level of
processing produces a processing error message and the
process terminates gracefully.

21

• PCF Generator:
– The ‘PCF Generator’ is being developed by the SDST Test Team.

– This tool will support test automation:

• Enables system test to create multiple executions of a single
PGE or set of PGE’s in order to output multiple products or
multiple days worth of products from that PGE.

– Each PCF copy would have at least one unique character in
its filename to distinguish it from another copy of that
same PGE.

• Once multiple instances of a PCF for a PGE have been made:

– Enables system test to create a script to sequentially
execute each with the appropriate PCF.

22

Test Data

• Types of test data:
– Simulated Data: being generated by SDST.

– Corrupted Data Sets: being generated by SDST.

– Processed TestData: being provided by Science Team members
and/or STIG with each MOD_PR.... submitted to CM.

– Ancillary Data: being extracted by SDST from NASA and DAO
fileservers.

– Produced TestData: Lower level output products that are produced
during SDST testing which will be used as input for higher level
process testing. (i.e. product(s) produced from L1A and L1B
testing will be used as inputs for L2 testing).

23

Storage of Test Data

• MODISNFS4:
– Storage of Processed, Simulated, Corrupted, and Ancillary data

sets will be accessible to all users (science team members, STIG,
the test team, and the DAAC’s) in READ ONLY mode at the
mount point of /TestData on the MODISNSF4 file server.

– In the event of shortage of disk space for test data storage, the
processed data will be backed up to tape and removed from the
online file server. The directory structure placeholder for that data
set will remain within the tree structure with a README text file
that indicates the location (physical tape/image) where the data can
be found.

24

TestData

MOD_PR10 MOD_PR01 SimData AncData

Data Results

Stress Orbit 32-day

Total
Ozone

Test Data Tree Structure

L0 L1A L1B

Weather
Model

Data Results

3-day 32-day

Total
Ozone

Weather
Model

Total
Ozone

Weather
Model

3-day 32-dayStress Orbit 32-day Stress Orbit 32-day

SST Total
Ozone

Weather
Model

SST

Ocean Atmos Land

Corrupted Data

modisnfs4

25

Storage of Test Results (Produced Data)

• MODISNFS1:
– Storage of Produced data sets (SDST testing results) will be

accessible to all users (science team members, STIG, the test team,
and the DAAC’s) in READ ONLY mode at the mount point of
/TestResults on the MODISNSF1 file server.

– In the event of shortage of disk space for storage of test results, the
produced data will be backed up to tape and removed from the
online file server. The directory structure placeholder for that data
set will remain within the tree structure with a README text file
that indicates the location (physical tape/image) where the data can
be found.

26

Test Results Tree Structure

V1_TestResults

MOD_PR01 MOD_PR10 MOD_PR03 MOD_PR09

Results Results Results Results

Function
Tests

Error
Tests

Limit
Tests

Function
Tests

Error
Tests

Limit
Tests

Function
Tests

Error
Tests

Limit
Tests

Function
Tests

Error
Tests

Limit
Tests

tmp_
files

run_time
 files

log
files

exec run_time
 files

log
files

tmp_
files

exec run_time
 files

log
files

tmp_
files

exec

 same same same same same same same same same

TestResults

modisnfs1

27

TLCF Test Configuration

• V1 Test Configuration:
– Performed on modispc

– Utilizing 66gig of disk space

– Configured with IRIX6.2 Operating System

– Software compiled and tested in -n32 mode

– Will utilize SDPTK version 5.1 and M-API 2.0

28

Types of Tests To Be Performed

• SDST will perform:
– Function testing: Verifying that the software performs according

to required system specifications. Internal and External interfaces
are verified during function testing.

– Error testing: Verifying that the software terminates gracefully
or generates error messages when erroroneous conditions are
injected.

– Performance (sizing and timing) testing: Statistics on the
amount of wall clock and CPU time each processor takes will be
gathered but not verified against any system requirements.

– Regression testing: Re-testing of previously tested software.
Done for re-delivered (modified) software and at the Thread level.

29

Levels of Testing To Be Performed

• Process Testing:
– A Function test will be performed on each individual process being

delivered (i.e. MOD_PR01, MOD_PR10, etc.). Timing and sizing
data (utilizing bintime only) will be gathered for each function test.

• PGE Testing:
– PCF Combiner will be executed to combine several processes into a

single PGE. Combining of processes into a single PGE may vary
from the recommended set of PGE’s that are to be delivered for V1
based on scheduled delivery dates for each process. Processes will
be combined into the recommended PGE’s for delivery to the
DAAC.

– Function and error testing will be performed and sizing/timing
statistics will be gathered.

30

• Thread Testing:
– Testing a combined set of processes across multiple PGE’s where

one PGE outputs a product (or products) that is used as the input
data to the next process. (i.e. L1A to L2 to L2G, etc.)

– PCF Generator and PCF Combiner will be used to generate and
combine processes of several PGE’s together (will automate granule
to tile, granule to orbit, single day to multi-day tile.) where possible.

– Function and error testing will be performed and sizing/timing
statistics will be gathered if feasible. Regression testing is
automatically implied at thread level testing.

• System Testing:
– End-to-End testing within the confines of system constraints.

– Purpose within the TLCF is to verify that proper memory allocation/
de-allocation is taking place with multiple processes running
simultaneously, proper disk swapping is taking place, file sharing is
not creating contention problems, runtimes are within a tolerable
limit, and that valid products are produced.

31

Validation/Review of Test Results

• Test Results, logfiles, temporary files, and executables used
during testing will automatically be posted on the modisnfs1
fileserver @ the mount point of TestResults. The SDST test
team will conduct a preliminary review of the test results for test
verification; however, it will be the responsibility of the science
team members to review the results on the file server for
scientific data validation.

• Scientists will have to examine the results from SDST testing to
determine the scientific validatity of all data results produced and
notifiy SDST System Test of QA review results.

32

Example of Function Test Script

• (1)#Run Function Test for MOD_PR10G

• (2)setenv PROGNM $1

• (3)cp /CM/TLX.X/PGE#/$PROGNM/exec/
$Prognm.pcf /systest/TLX.X/PGE#/
$PROGNM/exec/$PROGNM.tmp.pcf

• (4)setenv PGS_PC_INFO_FLE /systest/
TLX.X/PGE#/$PROGNM/exec/
$PROGNM.tmp.pcf

• (5)source /systest/TLX.X/util/setup

• (6)set_TK50_32

• (7)make -f $PROGNM.mk.clean

• (8)make -f $PROGNM.mk run

• (1)Comment which defines process under test

• (2)setting env for process under test (PR10G)

• (3)copying CM baseline files to systest env

•

•

• (4)setting toolkit env variables to the
temporary PCF file

• (5)script that defines aliases for TK and
MAPI

• (6)set environment for testing (TK and
MAPI)

• (7)clean env for testing. Removes old
logfiles and object files

• (8)run executables

33

• Input and Output test data pathnames will be defined within the
PCF file itself.

• Input files will be read from TestData or TestResults depending
on the process level under test.

• Output files will be written to TestResults/V1_TestResults tree
automatically.

